

How many New Yorkers will be pushed into poverty by federal cuts to the SNAP program?

Estimates from a new methodology in the face of policy uncertainty

Christopher Wimer¹ and Marina Gorzig^{1,2}

¹Columbia University Center on Poverty and Social Policy

²National Bureau of Economic Research

January, 2026

Understanding the effects of changes to policies on family income and poverty is a key priority for those who seek to craft smarter, evidence-based policy. Congress recently passed legislation, which was signed into law by the President, which made major changes to the Supplemental Nutrition Assistance Program (SNAP). SNAP, which provides near-cash food assistance benefits to millions of low-income Americans, was fundamentally changed by the recently-enacted reconciliation bill, sometimes referred to as the One Big Beautiful Bill Act of 2025. Though the changes to SNAP enacted through the bill were many, three major changes are of note: (1) changes to formulas for updating SNAP benefit levels over time; (2) implementation of work requirements for new populations of SNAP recipients; and (3) new state funding matching requirements, whereby states will be responsible for funding a portion of SNAP benefits going forward. In this brief, we estimate the number of New Yorkers we can expect to fall into poverty because of these policy changes.

Key Findings:

- Federal cuts to SNAP spending in New York State are projected to amount to at least \$13 billion over 10 years, potentially more; but because of considerable uncertainty in who exactly will lose benefits, deriving precise projections of New Yorkers moved into poverty is difficult with traditional modeling techniques.
- Using a new method to estimate the effects of cuts in the face of such uncertainty, we find that the CBO's projected cuts are likely to cause over 100,000 New Yorkers to fall into poverty each year from 2028 to 2034, reaching a peak of over 120,000 New Yorkers in 2032.
- Under more conservative assumptions that the least disadvantaged SNAP recipients would lose benefits first, this would still lead to over 80,000 New Yorkers falling into poverty in those same years.
- State actions to buffer against these federal cuts could considerably reduce the number of New Yorkers moving into poverty, as would federal efforts to repeal legislated program cuts.

Rationale and Policy Context

One policy analysis tool for understanding the effects of changes to policies on income and poverty is microsimulation, in which researchers simulate changes to households' resources that would result from policy changes. For example, if policymakers propose or enact changes to a major policy that provides income support to individuals and families, researchers can model the potential effects of that change in household survey data to understand that policy change's impacts on the incomes and poverty levels of affected families.

Understanding these potential effects, however, is difficult in the face of uncertainty as to how a policy change will play out across households. In such circumstances, we need more general methods to understand the likely impacts of policy reforms. This research brief proposes a new method for understanding the potential impacts of policy changes on individuals and families in the context of considerable uncertainty about how the results of policy reform will play out. We utilize recently-passed legislation that makes major changes to the Supplemental Nutrition Assistance Program (SNAP, commonly known as food stamps) as our case study for proposing this new method.

The changes to SNAP policy in the reconciliation bill are widely expected to lead to benefit cuts for individuals and families with low incomes. But the changes' population-level effects are still unknown, given that effects will depend on how state policymakers and individual households respond to the law. This makes microsimulation modeling of policy changes difficult, as there is considerable uncertainty in how these cuts will be enacted and how they will be felt across households. In the presence of this uncertainty, we need new methods for understanding potential impacts of broad but uncertain cuts.

Approach for the New Method

Research by the Congressional Budget Office (CBO) and the Center on Budget and Policy Priorities (CBPP) estimate that the likely cuts to SNAP amount to approximately 20% when fully realized.¹ The goal of this brief is to understand whether we can translate such a broad cut into microlevel effects on individuals and families, and to put plausible bounds on such an effect in the face of considerable uncertainty. Our approach involves three steps: (1) Calculate the efficacy of SNAP dollars in lifting individuals out of poverty in observed data; (2) Calculate the change in SNAP dollars from the projected 20% cuts to the program enacted in recent legislation; and (3) utilize the estimates from (1) and (2) to extrapolate the potential poverty-inducing effects of projected policy changes.

We begin by identifying the number of people lifted out of poverty by existing SNAP dollars in recent household survey data. We use the Census' Supplemental Poverty Measure (SPM), which is widely thought to be an improved measure relative to the official measure of poverty, in large part because it counts resources like SNAP benefits that the official measure ignores. We focus on New York State for this exercise, given Robin Hood and Columbia's interest in the impacts of SNAP changes in the state. We use data from the Urban Institute's TRIM3 model, which corrects household survey data for known underreporting of in-

¹See: <https://www.cbo.gov/publication/61569>, as cited in <https://www.cbpp.org/research/food-assistance/by-the-numbers-harmful-republican-mega-bill-takes-food-assistance-away-from>

come support programs.² We use a 3-year file covering calendar years 2017 to 2019 (from the 2018 to 2020 Current Population Surveys' Annual Social and Economic Supplements (CPS ASEC)); these years were prior to the large increases in pandemic aid such as SNAP emergency allotments, which have now expired.

In New York State, we see that the TRIM3 data reflects about **\$3.97 billion dollars in SNAP benefits in New York State**, the average across the three years. We also see that these SNAP dollars **lift a bit over 430,000 New Yorkers out of SPM poverty**, on average, across the three years. This translates into approximately \$9,200 in SNAP dollars per individual lifted out of poverty.³ Note that not all SNAP recipients will be poor in any given year, in either the SPM or the official measure that's used for determining program eligibility. SNAP eligibility extends above 100% of federal poverty guidelines and allows for some deductions to gross income before comparing incomes the guidelines,⁴ thus some SNAP recipients will be nonpoor even according to the official measure given how eligibility is determined.

The SPM is a more complex measure where many SNAP recipients will also be nonpoor in any given year because of the way the SPM is calculated. For example, other benefits like a housing subsidy or tax credits may put SNAP recipients above the poverty line before SNAP benefits are counted. The \$9,200 figure derived above averages across those who are deeply poor (i.e., too far below the poverty line to be moved above it), those who are closer to the poverty line and can be moved above it, and those who begin above the poverty line before SNAP is even counted, and thus have no potential to be moved out of poverty by their SNAP dollars. Program dollars will yield lower (or higher) ratios depending on the degree that benefits are targeted at the poor. In the case of SNAP in NYS, **about 64% of dollars go to those in poverty under the official poverty definition**.

An important question raised by this new method is whether the key parameter of \$9,200 (in 2018 dollars) holds outside of the 2017-2019 TRIM3 data. To assess this, we repeated the exercise in two other relevant datasets. First, we used the public use 2017-2019 data downloaded from the University of Minnesota's Integrated Public Use Microdata Series (IPUMS; Flood et al., 2025). This is the exact same data underlying TRIM3, though not with altered values of major benefits to align the data better with administrative totals. This data captures only **2.33 billion dollars in SNAP benefits in New York State**, the average across the same three years. These dollars **lift a bit over 255,000 New Yorkers out of SPM poverty**. These numbers are lower than under TRIM3 because of well-known underreporting of major benefit programs in the CPS ASEC and other household survey data.⁵ Despite the difference in data and SNAP coverage, this dataset also yields the same average number of SNAP dollars per person lifted out of poverty, \$9,200. This gives greater confidence in the initial estimate.

² TRIM3 project website, trim3.urban.org, downloaded on October 23, 2025. Information presented here is derived in part from the Transfer Income Model, Version 3 (TRIM3) and associated databases. TRIM3 requires users to input assumptions and/or interpretations about economic behavior and the rules governing federal programs. Therefore, the conclusions presented here are attributable only to the authors of this report.

³ Note this figure is in 2018 dollars; such that if a projected cut were estimated in dollar rather than percentage terms, this figure would need to be inflation-adjusted to that year.

⁴ Eligibility is also based on monthly incomes rather than annual incomes, which means that another reason SNAP recipients can be above the poverty line is because their annual incomes average out to be higher when summing up across the year – for example, someone who was out of work for 4 months but working for the other 8 months may have an extended period of eligibility even if their average income across the year might make them appear ineligible.

⁵ Meyer, B. D., Mok, W. K., & Sullivan, J. X. (2015). Household surveys in crisis. *Journal of Economic Perspectives*, 29(4), 199-226.

Because all of the data thus far are for 2017 to 2019, we conducted one further test of the estimate’s sensitivity. Specifically, we used a third three-year IPUMS dataset, this time covering calendar years 2022 to 2024, the most recent years of available data as of this writing.⁶ Here, the equivalent of our \$9,200 figure was \$10,600, though this is now in 2023 dollars. Deflating this figure to 2018 dollars yields a figure of a bit over \$9,000 per person lifted out of poverty — remarkably close to our two other numbers.

Results

While the exact manner in which SNAP cuts will play out at the household level are uncertain and dependent on a variety of actions — including the actions of state policy makers, we can use the figures above to get a rough approximation of what we could expect from SNAP cuts of a given size. As mentioned earlier, the CBO and CBPP estimate that **the SNAP cuts are likely to be approximately 20%**. If we assume a 20% cut in the TRIM3 data, this would amount to \$793 million dollars in the data (which represents TRIM3 estimates of approximately \$3.97 billion dollars, as noted above). Using the ratio established above, this would imply about 86,000 New Yorkers could be thrown into poverty by a 20% cut to SNAP that experts project. This is if they had been enacted in 2018, the calendar-year midpoint of the TRIM3 dataset we derived our estimates from. To test the plausibility of these estimates, we supplemented the analyses by running five microsimulations:

1. A simple cut of 20% in annual benefits applied equally to all SNAP recipients in the data
2. A reduction in the caseload, executed randomly, until 20% of benefits were removed
3. A reduction in the caseload, executed nonrandomly, taking away those with the smallest annual benefits first
4. A reduction in the caseload, executed nonrandomly, taking away those with the largest benefits first
5. A reduction in the caseload, executed nonrandomly, taking benefits away from those most likely to be affected first (which we define as families with noncitizens, families with children aged 14 to 17, families without children and ages 55-64, and families without children who are veterans). These are all groups either newly subject to work requirements in the final reconciliation bill or potentially ineligible entirely (i.e., certain groups of noncitizens).

Before turning to results, it is worth spending a moment on the rationale behind these simulations, particularly the 3rd and 4th; cutting the smallest benefits first means that relatively higher income SNAP recipients will be the first to lose benefits — for example if the new restrictions make the benefit-cost ratio of keeping benefits changes in response to new programmatic burdens. Cutting the largest benefits first means that relatively lower income SNAP recipients will be the first to lose benefits — for example if they have the most difficulty meeting new programmatic burdens. None of these simulations are meant to be particularly likely, but are used to illustrate the range of what we could see under a specific cut that amounts to 20%.

The smallest impact we observe across the five simulations was for removing those with the smallest benefits first (see Table 1). This yielded 65,000 New Yorkers moved into poverty as a result of the hypothetical cut. The next smallest yielded 76,000 New Yorkers, when an across the board cut of 20% in benefits was

⁶ Flood, S., King, M., Rodgers, R., Ruggles, S., Warren, J.R., Backman, D., Breton, E., Cooper, G., Drew, J.A.R., Richards, S., Van Riper, D., & Williams, K.C.W. (2025). IPUMS CPS: Version 13.0 [dataset]. Minneapolis, MN: IPUMS, 2025. <https://doi.org/10.18128/D030.V13.0>

implemented. The third smallest was 90,000, when we implemented a random removal of benefits until the 20% target was hit. Fourth largest was 105,000 when we removed those with the largest benefits first. And the greatest impacts were when we removed SNAP from groups newly targeted for changes — this stood at 106,000 New Yorkers.

Table 1

Five sample simulations of a 20% cut to SNAP in New York State, based on 2017-2019 TRIM3 data

	Number of people moved into poverty	Total dollars cut	Total dollars cut for poor ⁷ families	Percent of cut dollars that went to poor families
Cut all benefits by 20%	76,000	\$795,000,000	\$504,000,000	64%
Randomly remove SNAP units until benefits reduced by 20%	90,000	\$817,000,000	\$520,000,000	64%
Remove units with smallest benefit amounts first	65,000	\$792,000,000	\$304,000,000	38%
Remove units with largest benefit amounts first	105,000	\$791,000,000	\$684,000,000	86%
Remove SNAP units in a targeted manner	106,000	\$804,000,000	\$560,000,000	70%

Thus, our derived figure of 86,000 New Yorkers in the TRIM3 data was roughly in the middle of the range of possible estimates. This constitutes a plausible range, given that some represent a removal targeted toward the most well off (in the case of removing the smallest benefits first) and others represent a removal targeted at the least well off (in the case of removing the largest benefits first). For example, under the smallest benefits first scenario, only about 38% of benefits removed went to the (official) poor, whereas under the largest benefits first scenario this figure stood at 86%. In the other scenarios, this figure ranged from 64-70% removed from those in poverty. Thus 86,000 seems to be a reasonable estimate of a likely outcome (if executed in 2018), and is easily calculable from existing data. However, if one wanted a more conservative number, this might be more easily defended by taking the lower bound, in this case 65,000 New Yorkers.

The final step in the analysis is to apply these estimates to the size of the likely cut to New York State SNAP benefits when they take full effect. To arrive at such a figure, we first consult CBO's national projections by year of the size of SNAP cuts likely to result from the reconciliation bill. Over a 10-year period, this is estimated to be about \$187 billion dollars. SNAP benefits in New York State for fiscal year 2024 were \$7.35 billion versus about \$99.8 billion nationally in the same year.⁸ The share of SNAP benefits going to New York State residents is thus about 7.36%. We apply this 7.36% to CBO yearly projections of the amount of total benefits that the SNAP program will be reduced by from 2026 to 2034. Using these calculations, we find that begin-

⁷ Poverty as defined by the government's official poverty measure (OPM)

⁸ See: <https://www.osc.ny.gov/reports/budget/fed-funding-ny/nutritional-assistance>; and: <https://www.ers.usda.gov/topics/food-nutrition-assistance/supplemental-nutrition-assistance-program-snap/key-statistics-and-research>

ning in 2028, over 100,000 New Yorkers could be pushed into poverty by the reconciliation bill's SNAP cuts, reaching a peak of over 120,000 New Yorkers in 2032. Full results are presented in Table 2. Even if we take the low estimate of the range of our simulated 20% cuts (which are generally between 70 and 75% of the numbers in Table 2), this would still imply at least 80,000 New Yorkers pushed into poverty each year that the cuts are in full effect.

Table 2

Projected estimates of the number of New Yorkers pushed into poverty by OBBBA SNAP cuts

	2026	2027	2028	2029	2030	2031	2032	2033	2034
New Yorkers pushed into poverty by OBBBA SNAP cuts	44,000	88,000	115,000	113,000	111,000	107,000	121,000	120,000	118,000

Conclusion

This brief has presented a new method for estimating the number of New Yorkers likely to be pushed into poverty by the major SNAP policy changes passed into law by the 2025 reconciliation bill, sometimes referred to as OBBBA. One challenge with estimating such effects is the considerable uncertainty about who is likely to be most affected by the policy changes. This is especially true of new state matching requirements, which could force states such as New York to shoulder new budgetary costs or have to ration benefits in unprecedented ways.

Using the more general method presented here, we find that over 100,000 New Yorkers could be pushed into poverty in most years as the SNAP cuts take full effect. Even under more conservative estimates, at least 80,000 New Yorkers could be pushed into poverty year over year. These are only the numbers who would move below the poverty line because of a cut to SNAP benefits. Many more New Yorkers will be made poorer even though their incomes either don't fall below the poverty line, or were already below it to begin with.

The method presented here is not a substitute for rigorous microsimulation of policy effects. As the nature of SNAP cuts begin to take clearer shape, researchers should try to model their likely effects as soon and with as much precision as possible. Our results also point to the need for state governments like New York's to do as much as possible to backfill any loss of federal funds due to new SNAP policy rules. Given that states need to balance their budgets every year, a more sustainable solution would entail federal lawmakers undoing some of the likely harmful cuts still to unfold over the coming years. Lastly, we note that the SNAP cuts that we focus on here were not passed in isolation, but were passed alongside other major changes to the tax system, Medicaid, and other programs that have the potential to exacerbate the poverty-inducing effects projected here.

Appendix A: Methodology

Data: TRIM3 and IPUMS CPS

Our estimates use data from two sources: IPUMS Current Population Survey (CPS) and the Transfer Income Model, version 3 (TRIM3). IPUMS CPS is harmonized person-level data from the Current Population Survey, which is a large representative survey conducted by the Census Bureau. TRIM3 is a microsimulation model developed by the Urban Institute that produces corrected measures of program participation, eligibility, and benefit amounts for a wide range of federal programs, including SNAP. TRIM3 also uses person-level data from the Current Population Survey. TRIM3 applies program rules and simulations to CPS data to align reported benefit receipt with administrative records to correct reported benefit amounts for under-reporting. All estimates are for people living in New York State.

We estimate poverty based on the Supplemental Poverty Measure (SPM), a measure of poverty that accounts for cash and noncash government benefits, necessary expenses like taxes, health care, commuting, and childcare, and adjusts for family size and local housing costs. We used the three most recent years when TRIM3 data available (2018 to 2020, representing calendar years 2017 to 2019) to develop a version of the SPM that corrects for under-reporting of benefit receipt. To do this, we retrieved variables at the person, SPM unit, and household on income, expenses, transfers from public programs, and family size. TRIM3 replicates or clones some households and adjusts the individual, family, and household weights to accommodate these replicates.⁹ We use just the first replicate file and the CPS ASEC weights for individual estimates. We use two time periods of IPUMS; we first use 2018 to 2020 to match the TRIM3 and then 2023-2025, which is the most recent IPUMS data available.

We compute the total resources available at the SPM unit level, which is the family group that would be considered jointly for sharing resources. The total resources include the sum of income, cash government benefits, and noncash government benefits, and subtracts necessary expenses like taxes, medical spending, and work and childcare spending. We then compare total resources for the SPM unit to the SPM poverty threshold for the SPM unit's family size and location to assess if an SPM unit is in poverty. By using the TRIM3 data to calculate the SPM, we estimate a wholistic measure of poverty that is thought to more accurately incorporates public benefits after adjusting for survey misreporting. While IPUMS/Census data does not correct for misreporting, it is available for more recent years.

Baseline estimates: Average SNAP benefit needed to move one person out of poverty

We estimate how many people SNAP in New York moves out of poverty by subtracting off each SPM unit's SNAP benefit from their total resources. Using the recalculated total resources, we compute a new SPM poverty indicator that identifies households whose resources now fall below the SPM poverty threshold. We also estimate those in near poverty (less than 150% of the SPM poverty threshold) and deep poverty (less than 50% of the SPM poverty threshold). We additionally sum the total amount of SNAP benefits across all SPM units in New York to calculate the total benefits paid. We then divide the total amount of SNAP benefits paid by number of estimated number people that SNAP moves out of poverty to estimate the amount of SNAP dollars required to move one person out of poverty in New York.

⁹ More information on the replicates in TRIM3 is available here: <https://boreas.urban.org/documentation/input/Concepts%20and%20Procedures/Modifications%20to%20the%20Underlying%20Surveys.php>

New York generally receives approximately 7.4% of total SNAP benefits, so we estimate the total cut to SNAP in New York as 7.4% of the total estimated cut to SNAP funding from the OBBBA published by the CBO. We then divide the total estimated cut to SNAP in New York by the benefit amount needed to move one person out of poverty. This is our initial estimate of the number of people who will enter poverty due to the cuts to SNAP in OBBBA.

The following sections describe each of the five simulations referenced in the body of the brief.

Simulation 1: Reducing SNAP benefits by 20%

We then consider the impact of reducing all recipients' SNAP benefits by 20%. Individual SNAP benefits are estimated in TRIM3 data. We mirror this in IPUMS by using the total SPM unit's SNAP benefits divided by the number of people in the SPM unit. We recalculate total resources for each SNAP unit by subtracting off 20% of each individual's SNAP benefit and summing across SPM units. Using the recalculated total resources, we compute a new SPM poverty indicator that identifies households whose resources now fall below the SPM poverty threshold. We also estimate those in near poverty (less than 150% of the SPM poverty threshold) and deep poverty (less than 50% of the SPM poverty threshold).

Using survey weights, we then compute the number of who enter poverty under each level of benefit reduction. We finally estimate the dollar value of benefits removed from SNAP recipients above and below the OPM poverty. We divide all results by three to estimate the annual value.

Simulation 2: Randomly reducing SNAP enrollment to achieve a 20% total benefit reduction

In our second simulation, we use the analysis from the CBO to assess relative impact of different aspects of the OBBBA on SNAP. We next estimate a reduction in enrollment that reduces spending by the full 20%. We first simulate the impact of reducing SNAP eligibility, since changes in eligibility are the largest source of reduced federal spending on SNAP. In the first simulation, we randomly remove SNAP units from SNAP participation in each year until the total amount of benefits distributed equals 80% of the original level for that year. This approach simulates a policy change that reduces overall program enrollment rather than benefits.

We begin by calculating the total value of SNAP benefits among all SNAP recipients in New York, using survey weights so that the total is population representative. We calculate this separately for each year. We set the target amount for the simulation to 80% of this annual total. We then define a program that iteratively removes SNAP units from SNAP by randomly assigning each SNAP unit a uniform random number between zero and one. All people in units with values below a certain threshold have their SNAP benefit amount set to zero, representing a loss of eligibility or withdrawal from the program.

The program begins by removing roughly 15% of SNAP units and then checks whether the total remaining SNAP benefits have fallen to the 80% target. If the reduction is not yet sufficient, the threshold is gradually increased in 1 percentage point increments until the total amount of remaining benefits equals the target level. This procedure ensures that the aggregate reduction in benefits equals approximately 20% of the pre-simulation annual total. Note that we do not randomly remove 20% of SNAP units, because this may not sum to 20% of SNAP benefits received.

After determining which SNAP recipients lose benefits, we recalculate total resources for each SPM unit by summing across individuals in each SPM unit — subtracting their original SNAP amount and adding back their simulated benefit (zero for those in SNAP units that were cut, unchanged for those who remain). Using the recalculated total resources, we compute a new SPM poverty indicator that identifies households whose resources now fall below the SPM poverty threshold. We also estimate those in near poverty (less than 150% of the SPM poverty threshold) and deep poverty (less than 50% of the SPM poverty threshold).

We then use survey weights to estimate the population-representative number of people who enter poverty due to the simulated reduction in SNAP enrollment and average poverty rate. We additionally estimate the dollar value of benefits removed from SNAP recipients above and below the OPM poverty line.

We repeat this entire procedure 500 times; in each repetition we produce estimates of the number of people entering poverty. We finally estimate the dollar value of benefits removed from SNAP recipients above and below the OPM poverty. We store these estimates across all replications to summarize the average effects and their sampling variation. This allows us to observe not just the expected impact of a reduction in SNAP enrollment on number of people and children in poverty but also how much those numbers may vary. We divide all results by three to estimate the annual value.

Simulation 3: Reducing SNAP enrollment in a targeted way

We build on simulation 2 to reflect that the reductions to SNAP enrollment may not be random, but will impact certain groups more. We therefore simulate the impact by randomly cutting benefits among those who are at risk of being impacted by the new eligibility requirement up to the point where the total SNAP benefit payments are reduced by 20%. We define those at risk of being impacted by the OBBBA's changes to eligibility rules as those who received SNAP and are not U.S. citizens or those who are working less than 30 hours a week and were previously eligible for a work requirement waiver that OBBBA removed. This includes veterans, people with a child over 14 years old, and those aged 55 to 64.

We used the same method as described in Simulation 2 to simulate the impact of cutting eligibility among those at risk until reaching a 20% reduction total benefit payments. We then estimate the number of people and children who entered poverty, near poverty, and deep poverty. We repeat this simulation 500 and then calculate the average poverty rate and number of people who would enter poverty under these conditions. We finally estimate the dollar value of benefits removed from SNAP recipients above and below the OPM poverty. We store these estimates across all replications to summarize the average effects and their sampling variation. This allows us to observe not just the expected impact of a reduction in SNAP enrollment on number of people in poverty but also how much those numbers may vary. We divide all results by three to estimate the annual value.

Simulation 4 & 5: Ranking by amount of benefits received

We finally simulate the impact of reducing SNAP eligibility for units that receive more or fewer SNAP benefits. We first rank SNAP units (TRIM3 data) or SPM unit (IPUMS data) by the total amount of SNAP benefits they receive and, beginning with those who receive the lowest, we remove units from SNAP participation in each year until the weighted total amount of benefits distributed equals 20% of the original level for that year. This approach simulates a policy change that reduces overall program enrollment among units that receive relatively small SNAP benefits.

After determining which SNAP recipients lose benefits, we recalculate total resources for each SPM unit by summing across individuals in each SPM unit - subtracting their original SNAP amount and adding back their simulated benefit (zero for those in units that were cut, unchanged for those who remain). Using the recalculated total resources, we compute a new SPM poverty indicator that identifies households whose resources now fall below the SPM poverty threshold. We also estimate those in near poverty (less than 150% of the SPM poverty threshold) and deep poverty (less than 50% of the SPM poverty threshold).

We then use survey weights to estimate the population-representative number of people who enter poverty due to the simulated reduction in SNAP enrollment and average poverty rate. We finally estimate the dollar value of benefits removed from SNAP recipients above and below the OPM poverty.

We then repeat this exercise, but rank units from largest amount of SNAP benefits received to lowest. This approach simulates a policy change that reduces overall program enrollment among units that receive relatively larger SNAP benefits.